
 

Abstract-the problem of estimating the input sequence of a 

known, non-minimum phase system is considered in this paper. 

The proposed method is based on minimizing the sum of squared 

differences between the original and the estimated output. The 

estimated output is obtained by exciting the system with un-

known input signal which begins with initial values and is 

updated step by step in order to minimize the mentioned error. 

New viewpoint of the convolution equation allows to: 1) identify 

the un-known parameters of the input sequence recursively and 

2) apply any optimization algorithm in the deconvolution 

problem. Genetic Algorithm optimization is considered in this 

paper because of its power in searching the entire solution space 

with more probability of finding the global optimum. This 

approach covers the deconvolution of the both FIR and IIR non-

minimum phase filters. Also simulation results show the accuracy 

and simplicity of our proposed algorithm in the deconvolution of 

the non-minimum phase, high order FIR filters common in 

seismic and speech signal processing.     

Keywords: Recursive Genetic Algorithm, Non-Minimum Phase 

Systems, Deconvolution. 

I. INTRODUCTION 

   According to [1], the deconvolution problem is intricate for 

at least two reasons: the measurements are usually noise 

corrupted, and the system is frequently non-minimum phase. 

These problems restrict the use of a simple deconvolution 

filter, namely, the inverse system. These restrictions placed on 

the inverse system filter design depend on the application. The 

main problem derives from inversing non-minimum phase 

systems which makes systems to be unstable (some poles are 

located outside the unit circle in the z-plane). There is a wide 

range of applications, including seismology, equalization, 

numerical differentiation, and speech synthesis. See, for 

example, [1], [2], [9],[4], [7], [5], [10], and [11]. The list can 

be much longer for what is the common interest-estimating the 

input to a LTI system.  

In [1], authors approached the deconvolution problem from a 

shift operator point of view, seeing it as a linear quadratic 

optimization problem.  

 

 

 

 

 

 

 

 

 

 

 
 

Fig1: a) Non-minimum phase system. b) Viewpoint of previous works in 

deconvolution problem that causes to design appropriate filter reach to input 

signal. c) Viewpoint of proposed method which. 
 

This approach covers input prediction, filtering and smoothing 

problems, and the use of pre-filters in the quadratic criterion. 

Such problems can be approached with different methods such 

as Kalman filtering [3], Wiener filtering [8], or Wiener 

optimization of filters with predetermined structure, such as 

FIR filters [6].  

In this paper we will approach the deconvolution problem 

from a new viewpoint of the convolution equation in noise 

free, FIR systems. Also, the proposed algorithm will be 

expanded to cover IIR (ARMA model) filters. Our perspective 

of the convolution equation causes to find a recursive 

optimization algorithm and identify the un-known parameters 

of the input signal step by step. Any optimization method can 

be used in our algorithm, but GA (Genetic Algorithm) is more 

important in comparison with conventional optimization 

methods because of its power in searching the entire solution 

space with more probability of finding the global optimum. 

We do, however, believe that the solution presented here 

provides important insights, not only, in the estimating the 

input signal of a non-minimum phase system, but also, in 

using recursive optimization methods without consideration of 

the length of the un-known parameters which is the serious 

problem of all optimization algorithms.  
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Figure (1.a) shows the general illustration of non-minimum 

phase, LTI systems. Figure (1.b) shows the view point of 

previous works in the deconvolution problem and figure (1.c) 

shows a new point of view which is the basis of this paper. 

The organization of this paper is as follows: in section II, 

definitions of deconvolution problem are defined and a new 

viewpoint of obtaining the parameters of the input sequence is 

shown. In section III the proposed algorithm is explained and 

finally in section IV, the simulation results are considered to 

indicate the accuracy and robustness of our proposed 

algorithm.    

 

II. PROBLEM STATEMENT 

 

Consider a linear time invariant system which is assumed to be 

non-minimum phase FIR. This system can be described by 

convolution formula. 

�
=

−==

q

i

khknbnhnbny
0

)()()(*)()(                                       (1) 

)()()( nvnynw +=                                                                  (2) 

 

Where )(nb is the unknown input sequence (in the 

deconvolution problem), )(nh is the finite impulse response 

shown as 
q
nnh 0)}({

=
 that is non-minimum phase, L

nny 0)}({ = is 

the noise free output, )(nv is a additive, zero mean, Gaussian 

noise and )(nw is the noisy output. Figure (2) describes the 

model. 

          
                                Fig2: Model of a LTI system 

 

Assume that )(nh and )(ny are available. In this part, in order 

to simplify the description of our model, we focus on noise 

free system. By expanding equation (1), the following 

relations are obtained. 
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The relations in equation (3) show that unknown input 

sequence )(nb can be obtained recursively which is the basis 

of our proposed method. Consider figure (3) which illustrates 

our perspective in solving unstable deconvolution problems. 

In this model, sequence L
nnb 0)}({ = is the unknown input signal 

that must be found by minimizing the sum of differences 

between the output, )(ny , and its estimation )(ˆ ny . The result 

of exciting the non-minimum phase system with the unknown 

sequence L
nnb 0)}({ =  is )(ˆ ny . This new model allows us to 

consider the non-minimum phase system as any other system 

without inversing it which causes instability. The fitness 

function is as follow: 
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  Fig3: Model of the deconvolution problem 

 

The main issue in finding the unknown sequence L
nnb 0)}({ = is 

its length L that can make any optimization method go wrong. 

The disability of optimization methods increases rapidly with 

the length of signal. We solved the above problem by using 

recursive optimization method that permits to obtain 

parameters step by step. The results are independent of the 

length of input or output signal. Consider figure (4) that allows 

us obtain the parameters of the input signal recursively. Note 

that analytical solution for equation (3) exists, but the input 

sequence which is obtained by analytical solution, diverges to 

infinity because of the error build-up.  

     
Fig4: Relations between input parameters and partial convolution equations 

 

Figure (4) illustrates how each input parameter appears in 

different convolution value as described in (3). It shows all q 

equations (as assumed) related to )0(b , also (q-1) equations 

related to )1(b and so on. Therefore, on the basis of their 

representations in different equations, it seems logical to start 

estimating )0(b first, followed by )1(b and so on in a recursive 

manner. As we use an optimization procedure that takes into 
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account as many as possible convolution values for the 

estimation of each input parameter, the error is not built up as 

in the iterative analytical solution. 

 

III. PRPOSED ALGORITHM 

 
This algorithm is based on the recursive relation of parameters 

shown in equation (3). The model of our algorithm is 

demonstrated in figure (2). Now consider the following 

algorithm. 

 

Algorithm: 

 

1.  Initial value 

 

Set b =zeros(1,L), where L is the length of output signal 

(equals to the length of the input signal). 

 

2. Finding first 5 parameters of sequence b  

 

Find x(0), x(1), x(2), x(3), x(4) by minimizing equation (4), 

using genetic algorithm optimization. Consider figure (5) 

which shows the model of finding first 5 parameters of the 

input sequence b . 

 
Fig5: Model of finding first 5 parameters of sequence b 

 

After this step and determination the unknown parameters 

using genetic algorithm optimization, b(0)=x(1), b(1)=x(2), 

b(2)=x(3), b(3)=x(4), b(4)=x(5). The sequence of input signal 

b will be ]00)4()3()2()1()0([ �bbbbbb = . 

 

3. Finding second 5 parameters of sequence b  

 

Find x(0), x(1), x(2), x(3), x(4) similar to step 2 as the second 

set of 5 unknown parameters. Figure (6) illustrates the model 

of finding second 5 parameters of sequence b . Consider that 

parameters b(0:4) are determined in the second step and x(0:4) 

are unknown parameters that should be estimated in this step. 

 
Fig6: Model of finding second 5 parameters of sequence b 

 

After this step and determination of unknown parameters 

using genetic algorithm optimization, b(5)=x(0), b(6)=x(1), 

b(7)=x(2), b(8)=x(3), b(9)=x(4). The sequence of input signal 

b  will be: 

]00)9()8()7()6()5()4()3()2()1()0([ �bbbbbbbbbbb = . 

 

4. Continue to find all parameters 

Similar to steps 2 and3, in each step estimate b(k), b(k+1), 

b(k+2), b(k+3), b(k+4). 

Note1: the convergence of the proposed algorithm is 

confirmed in practice and is intuitively explained on the basis 

of equation (3) and figure (3) considered in the previous 

section. 

Note2: this algorithm can be repeated after finding all 

parameters of sequence b  then used as initial values. 

 

GA Parmeters: 

 

The genetic algorithm is a stochastic optimization algorithm 

that was originally motivated by the mechanisms of natural 

selection and evolution of genetics. In the following, a 

parameter estimation algorithm is developed based on GA to 

estimate the unknown parameters, by carrying out 

minimization of the sum squared errors in equation (4). 

All GAs are effective when used with its best operations and 

values of parameters [13]. The following parameters are 

modified due to experimental results.  

1) The fitness function is considered in (4) that must be 

minimized. For standard optimization algorithm this is known 

as the objective function. 

2) The population size determines the size of the population at 

each generation. Choosing the population size as 20 will be 

satisfied the results. This optimization includes five variables 

so the population can be represented with a 20 by 5 matrix. At 

each iteration, the genetic algorithm performs a series of 

computation on the current population to produce a new 

population. The algorithm begins by creating a random initial 

population in the interval of [-1, 1]. 

3) At each step, the genetic algorithm uses the current 

population to create the children that make up the next 

generation. Algorithm usually selects individuals that have 

better fitness value. 

“Stochastic uniform” used as selection mechanism; it is robust 

and simple. 

4) “Elite” children are the number of individuals with the best 

fitness values in the current generation that are guaranteed to 

survive to the next generation. Elite count considered in this 

paper is 5 or 25% of population size. 

The “termination criterion” is reaching at 100th generation that 

means algorithm is repeated until the number of generations 

equal to 100.  

5) “Gaussian mutation” and “heuristic crossover” are used to 

produce offspring for the next generation. As known a 

Gaussian mutation operator requires two parameters: the 

mean, which is often set to zero, and the standard deviationδ . 

δ =5.5 is satisfactory in this optimization. Suppose a child is 
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considered as a value will be produced in the next generation 

and parents are the values which obtained in previous 

generation, “heuristic crossover” returns a child that lies on the 

line containing the two parents, a small distance away from 

the parent with the better fitness value in the direction away 

from the parent with the worse fitness value. The parameter 

Ratio can specify how far the child is from the better parent. 

The following equation illustrates the relation between 

parameter Ratio and child (as next generation). 

 

Child= parent 2 + R (parent 1- parent 2) 

 

Where parent 1 & parent 2 are the current generating parents, 

and of course parent 1 has the better value, and R is the 

parameter Ratio. R=1.2 is employed. 

    

6) Using “Hybrid function” increases the robustness of genetic 

algorithm. A hybrid function is an optimization function that 

runs after the genetic algorithm terminates in order to improve 

the value of fitness function. The Hybrid function uses the 

final point from the genetic algorithm as its initial point.  

We use the function “fminsearch” an un constrained 

minimization function in the MATLAB optimization toolbox. 

”fminsearch” uses the simplex search method of [12]. This is a 

direct search method that does not use numerical or analytic 

gradients. 

 

IV. SIMULATION RESULTS 

 

In the following examples, we use our recursive algorithm to 

identify the input sequence from output data and the assumed 

non-minimum phase (NMP) system. At the end of this part, by 

comparing original and the estimated input, the accuracy of 

our proposed algorithm will be shown. 

 

Example 1: (NMP-MA case) the original input signal that 

should be estimated is shown in figure (8, left). The relation of 

the output and input is as follow: 
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Fig7: Left: the impulse response of system, Right: pole-zero plot 

 

 

 

 

 

 

 

 

 
Fig8: Left: the original input, right: The output of system 

 

 

 

 

 

 

 

 
Fig9: Estimated versus original input using our proposed algorithm once (left) 

and for three times (right). 

 

Figure7 shows the impulse response of assumed system and 

the zeros location of its transfer function in z-domain 

respectively. Also figure9 shows the estimated sequence of 

input signal using our proposed algorithm respectively once 

and three times which shows the accuracy of our proposed 

algorithm in the deconvolution of systems that are non-

minimum phase (un-stable due to inverse filtering).  

 

Deconvolution of NMP-ARMA Model System 

 

It is obvious that in this case, the relation of parameters in the 

convolution equation will be changed because of the AR part. 

One way is separating the MA and AR parts and using the 

previous algorithm that is considered in figure (4). Consider 

the ARMA model (figure (10)). 

            
Fig10: the ARMA Model 
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Where the system (
)(

)(

zA

zB
) and the output ( )(ny ) are available 

and it is assumed that the system is noise free. In order to use 

our proposed algorithm, equation (5) should be converted to 

an MA model. Therefore we use the following model. 

 
Fig11: Convert ARMA model to MA model 
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 Example 2: (NMP-ARMA case) the true input signal that 

should be estimated is shown in figure (13, left), and the 

relation between the output and input is as follow: 

 

)7(3)6(1.2)5(5)4(4

)3(3)1(2)()10(0870.0
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Fig12: Left: the impulse response of system, Right: pole-zero plot 

 

 

 

 

 

 

 

 

 

 
Fig13: Left: the original input, Right: the output of system 

 

 

 

 

 

 

 

 

 
 

Fig14: Left: the estimated input (using algorithm for three times), Right: the 

original versus estimated input 

 

Figure12 shows the impulse response of the system and the 

pole-zero locations of its transfer function respectively. 

Figure14 (left) shows the estimated sequence of the input 

signal using our proposed algorithm for three times, also 

figure14 (right) indicate the estimated versus original input.  
 

V. Conclusion 

 

We described a novel method for deconvolution of non-

minimum phase systems. We proposed a new perspective on 

convolution formula which leads to a recursive algorithm for 

obtaining the parameters of the input sequence. Unlike 

previous studies our approach does not cater for designing a 

deconvolution filter in order to estimate the input. Therefore, 

the proposed algorithm can be used in non-minimum phase 

systems as well as minimum phase systems. Also our 

approach covers both MA and ARMA models.  Moreover the 

results show the accuracy and robustness of our proposed 

method in identifying the parameters of the input sequence 

where the assumed system is non-minimum phase. 
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