
 

Abstract-In this paper we present a novel method for 

identification of linear time invariant, non-minimum phase 

(NMP), FIR systems, when only output data are available and the 

order of filter is higher than four. We generally model a non-

minimum phase system as an MA model of known order. To 

estimate the parameters of our model, we exploit 1-D diagonal 

slice of third order cumulant of output, which may be 

contaminated by additive, zero mean, Gaussian white noise of 

unknown variance. This method is based on a new point of view 

on the third order cumulant equation and using recursive 

optimization method in order to identify un-known parameters 

by minimizing the sum of squared differences between the 

observed cumulant (diagonal slice) and the cumulant of proposed 

model. We propose both analytical and optimization-based 

solutions for identifying the filter coefficients and using 

analytical-based solution as a view point of applying our 

recursive optimization algorithm which causes to obtain 

parameters recursively. Also Genetic Algorithm optimization is 

considered as optimization method in this paper. Moreover 

Experimental results indicate the robustness and accuracy of 

proposed algorithm for high order systems.�  
 
Keywords: Higher Order Statistics (HOS), MA Parameter 

Estimation, Recursive Algorithm, Genetic Algorithm Optimization. 

I. INTRODUCTION 

 

   During recent years higher order statistics (spectra) have 

begun to find wide applicability in many diverse fields; e.g., 

sonar, radar, plasma physics, biomedicine, seismic data 

processing, image reconstruction, harmonic retrieval, time 

delay estimation, adaptive filtering, array processing, blind 

equalization and blind system identification[1]. These 

statistics, known as cumulants, and their associated Fourier 

transforms, known as poly spectra, not only reveal amplitude 

information about a process, but also reveal phase information. 

This is important, because, as is well known, second order 

statistics are phase blind.  

                       
Fig1: Model Transfer Function 

 

Various recursive and least squares methods for the 

identification of MA systems have been proposed using a 

variety of second, third and fourth order statistics and different 

1-D cumulant slices [3], [5], [9], [10-11]. Mendel in [1] 

categorized the methods for blind MA system identification in 

three groups. 1) Closed-form solutions. 2) Linear algebra 

solutions. 3) Optimization solution. 

[4] developed a new method for MA parameter estimation 

which exploited all samples of the second and third order 

cumulants to reconstruct the unknown system impulse 

response. [6] and [8] proposed methods that depend on third 

order cumulants alone. Method [7] is remarkably different as it 

uses a combination of second, third and fourth order statistics. 

This aim in using this combination of cumulant orders is to 

support intrinsically and automatically all non-Gaussian input 

distributions. Hence method [7] can be used more widely and 

with more confidence regardless of prior knowledge of the 

system statistics. For an MA process the system output is 

related to the input by the convolution sum of the input with 

the rational system transfer function, )(zB figure (1). From 

other prospective, two techniques are employed in the 

estimation of the filter coefficients: nonlinear methods and 

linear simplifications. Nonlinear solutions can be 

computationally expensive and may converge to local 

minimum [4]. However, when these nonlinear methods are 

properly initialized, the estimates obtained are generally better 

than the estimates obtained using linear methods. MN96 is a 

nonlinear method which currently uses the ),( kqc formula [9] 

to initialize the algorithm. These mentioned methods assume 

prior knowledge of MA model order, q. In fact, estimation of q 

from the time series is a substantial part of the system 

identification problem. Hence, model order selection has 

become an area of research in its own right.  
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Up to now, researches in ([12], [13], [14], [15], [16]) have 

concentrated mostly on identifying MA filter coefficients with 

the order lower than five. The main problem of HOS-based 

MA parameter estimation for high order filters is due to 

propagation errors in estimating the parameters which is 

derived from the high nonlinearity of cumulant-based 

equations due to parameters. This problem is solved by 

proposed method. The power of proposed method in 

estimating the parameters of systems with the model order 

higher than 4, derives from the recursive characteristic of our 

method.                   

Organization of this paper is as follows: in section II, 

definitions of MA filters and third order cumulant equation are 

defined, in section III, the problem of MA parameter 

estimation using third order cumulants is stated and in section 

IV, a new viewpoint of reaching to MA filter coefficients is 

shown and the proposed algorithm is explained in section V, 

and finally in section VI, the simulation results are considered 

to indicate the accuracy and robustness of proposed algorithm. 

 

II. MA FILTERS AND HIGHER ORDER STATISTICS 

 

Following [3], consider the system depicted schematically in 

figure (2). The noise-free signal, ][kx , is related to the driving 

noise,  ][kw , by parameters ][ib where i takes the values 0,1, 

� , q and q is the model order. The observed output, ][ky , is 

corrupted by additive Gaussian noise, ][kv . Figure (3) shows 

a more generic representation of the MA(q) process where the 

filtering operation is depicted by the function B(z). For an MA 

process B(z) is rational polynomial with order q equal to the 

number of previous inputs that affect the current output which 

gives the order of the process. The noise-free output, ][kx , is 

related to the input, ][kw , by constant weights, 
q
iib 0)}({ = , 

given in equation (1). The corruption of this output by noise 

results in equation (2) where the observed noise-corrupted 

signal, ][ky , is summation of the noise-free signal and the 

additive noise ][kv .    

 
Fig2: MA Modeling 

       
Fig3: Notation for Cumulant Identification Methods 
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If higher order statistics are to be used to formulate a general 

relationship for the identification of the model parameters 

from the output of the system only, then the following 

conditions 1 and 2 must hold: 

1. The driving noise, ][kw , is zero-mean, independent 

and identically distributed (i.i.d) and non-Gaussian 

with 2
2

2 ]}[{ wkwE γ= , 0]}[{ 3
3 ≠= wkwE γ , and 

03]}[{ 42
4 ≠=− wwkwE γγ . 

2. The measurement noise, ][kv , is assumed to be zero-

mean, i.i.d., and independent of ][kw . In addition it 

is assumed to be Gaussian in distribution with 
22 ]}[{ vkvE σ= , 0]}[{ 3

3 == vkvE γ , 

03]}[{ 4
24 ==− vvkvE γσ . 

Let ),(3 nmc x represent the third order cumulant of the 

observed noise-free signal at lags m and n. equation (3) relates 

the third-order cumulant at the specified combination of lags 

to the MA parameters 
q
iib 0)}({ =  and the skewness of the input 

to the system, w3γ . 

�
=

++=
q

k

wx nkbmkbkbnmc
0

33 )()()(),( γ                                 (3) 

This relation is the basis for all methods of blind system 

identification which make use of third-order statistics. 

 

III. PROBLEM STATEMENT 

 
Equation (3) can be modified to yield an equation using the 

diagonal slice of the third order cumulants. This method is 

obtained by setting m=n in (3) generating a relation between 

the diagonal cumulant slice ),(3 kkc x and the MA parameters 

to be estimated [3]. 

qqmmkbkbmmc
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γ         (4) 

The fitness function which should be minimized according to 

equation (4) is as follow:  

� �
−= =

+−=
q

qm

q

k
wy mkbkbmmcJ

0

22
33 ])()(),([ γ                   (5) 

[17] suggested two methods for the estimation of the MA 

coefficients based on the ),(3 kkc x formula: a nonlinear least-

square approach, and a linear programming approach. The 

computational overhead in [17] is very high and rapidly 

increase with model order, and similar to other previous 

works, is only appropriate for low order filters ( 4≤q ).  

We present a novel point of view in equation (3) that allows us 

obtain unknown parameters recursively. We will show next 
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the analytical basis of our optimization method to estimate the 

parameters of a non-minimum phase MA filter. 

 

 

IV. ANALYTICAL VIEWPOINT 

 

According to equation (3), following equations will be 

obtained: 
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It can be seen from the system of equations (6, 7, 8) that: 

)0(b , )(qb can be obtained by solving Eq(6). )1(b , )1( −qb    

Will be obtained next by using )0(b , )(qb  and solving Eq(7). 

)2(b , )2( −qb will be estimated using )0(b , )(qb  and 

)1(b , )1( −qb  and solving (8) by the same token. Other 

parameters are defined in the same way recursively. 

 

V.  OPTIMIZATION-BASED SOLUTION 

 

In this part, we describe our algorithm which is based on 

recursive estimation of unknown parameters. Consider the 

following model. 

 
Fig3: Model of proposed algorithm 

 

Where w3γ is the skewness of input signal which can be 

calculated using the method in [2], ),( mmc is the 1-D diagonal 

slice of third order cumulant of output, and, ),(ˆ mmc is 

available using equation (4) and the sequence of b are 

unknown parameters which should be determined by 

minimizing equation (5). We propose following algorithm 

which is based on recursive dependence of parameters to each 

other considering equations (6-9), in order to find the sequence 

of b (MA filter coefficients). 

 

Proposed Algorithm 

 

Step1.initial value 

Set b =zeros(1,q), where q is the order of filter (in this paper, 

it is assumed that the order of filter is definite). 

Step2.finding b(0) and b(q) 

Insert x(1)=b(0) and x(2)=b(q) and find x(1) and x(2) by 

minimizing equation (5) using genetic algorithm optimization. 

Consider figure (4) which shows the model of finding b(0) and 

b(q).  

 

 
Fig4: Model of second step of proposed algorithm 

 

After this step b(0)=x(1), b(q)=x(2). The sequence of MA 

filter coefficients ( b ) will be )](00)0([ qbbb �= . 

Step3.finding b(1) and b(q-1) 

Using b(0) and b(q) from step 2 and  insert x(1)=b(1) and 

x(2)=b(q-1), then find x(1) and  x(2) by minimizing equation 

(5), using genetic algorithm optimization. Consider figure (5) 

which shows the model of finding b(1) and b(q-1).  

 

  
Fig5: Model of third step of proposed algorithm 

 

After this step b(1)=x(1),  and b(q-1)=x(2). The sequence of 

MA filter coefficients ( b ) will be as follow: 

)]()1(00)1()0([ qbqbbbb −= � . 

Step4.continue to find all parameters 

Similar to steps 2 and3, in each step obtain b(k), b(q-k). 

 

Note1: The convergence of proposed algorithm is based on 

equations (6-9) that considered in previous section. 

Note2: As equation (5) is a criterion based on cumulants and 

these are delay insensitive it can be concluded that the 

estimated parameters may have a phase delay in comparison 

with the original ones. Therefore, a delay mismatch between 

the estimated and original parameters may occur. 

Note3: In each step of the genetic algorithm, x(1) and x(2) are 

found. In our experimental results, we obtain four parameters 

in each step using the setting given below for the MATLAB 

GA algorithm. It means in each step, b(k), b(q-k), b(k+1), b(q- 
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k-1) are obtained using the above mentioned steps 2-4 . The 

computation time is reduced doing so. 

Note4: The accuracy of the proposed algorithm can be proved 

by considering the differences between 1-D diagonal slice of 

output cumulants and cumulants that are obtained by inserting 

the estimated parameters in equation (4). The results (section 

6) show the accuracy and convergence of the proposed 

algorithm. 

Note5: This algorithm can be repeated after finding all 

parameters of sequence b , and setting this sequence as initial 

values for next running the algorithm from step 2.  

 

GA Operators: 

All GAs are effective when used with its best operations and 

values of parameters. The following operators are modified 

due to experimental results.  

1) The fitness function is considered in equation (5) that must 

be optimized. For standard optimization algorithm this is 

known as the objective function. 

2) The population size determines the size of the population at 

each generation. Choosing the population size as 50 is 

satisfied the results. 

This optimization includes two variables (four variables in our 

case) so the population can be represented with a 50 by 2 

matrix, at each iteration, the genetic algorithm performs a 

series of computational on the current population to produce a 

new population. The algorithm begins by creating a random 

initial population in the interval of [-1, 2.5].  

3) At each step, the genetic algorithm uses the current 

population to create the children that make up the next 

generation. Algorithm usually selects individuals that have 

better fitness values. “Stochastic uniform” used as “selection” 

mechanism, it is robust and simple. 

4) Elite children are the number of individuals with the best 

fitness values in the current generation that are guaranteed to 

survive to the next generation. “Elite count” considered in this 

paper is 10 or 20% of population size. 

The “termination criterion” is reaching at 200th generation that 

means algorithm is repeated until the number of generations 

equal to 200.  

5) “Gaussian mutation” and “heuristic crossover” used to 

produce offspring for the next generation. As known a 

Gaussian mutation operator requires two parameters: the 

mean, which is often set to zero, and the standard deviationδ . 

δ =5.00 in our case.    

 Suppose a child is considered as a value will be produced in 

the next generation and parents are the values which obtained 

in previous generation, “heuristic crossover” returns a child 

that lies on the line containing the two parents, a small 

distance away from the parent with the better fitness value in 

the direction away from the parent with the worse fitness 

value. 

The parameter Ratio can specify how far the child is from the 

better parent. The following equation illustrates the relation 

between parameter Ratio and child (as next generation). 

          Child= parent 2 + R (parent 1- parent 2) 

 

Where parent 1 & parent 2 are the parents of the current 

generation, and of course parent 1 has a better value, and R is 

the “parameter Ratio”. R=1.2 is considered in this work.     

6) Using “Hybrid function” increases the robustness of genetic 

algorithm. A hybrid function is an optimization function that 

runs after the genetic algorithm terminates in order to improve 

the value of fitness function. The Hybrid function uses the 

final point from the genetic algorithm as its initial point. We 

use the function “fminsearch” an un constrained minimization 

function in the optimization toolbox of MATLAB. 

“fminsearch” uses the simplex search method of [18]. This is a 

direct search method that does not use numerical or analytic 

gradients.  

 

VI. SIMULATION RESULTS 

 

In the following examples, we use our recursive algorithm to 

identify MA model from output data only. Also for the input 

sequence, independent exponentially distributed random 

deviates ( 2,1 3exp
2
exp === γγδ ) are generated by using 

HOSA Toolbox [19]. To find the estimate 3ĉ (third order 

cumulant) needed for our MA identification algorithm, we 

used N output samples which are computed by convolving the 

random input with the true MA model. The N (640 or 1024 or 

2048) output samples were divided into (5 or 8 or 16) records, 

respectively, each containing 128 samples. 

       
To reduce the variance of the 3ĉ estimator, we averaged over 

the M-records to obtain 

 
Also Gaussian noise was added to produce signal to noise ratio 

(SNR) level of 10dB as in [2]. 

 

 Example 1: (NMP-MA with q=12) the true non-minimum 

phase model is (according to figure (2)) 

 

)11(30)10(43)9(39)8(12

)7(11)6(50)5(19)4(23

)3(40)2(31)1(20)(10)(

−−−+−+−+

−−−−−+−−

−−−+−+=

iiii

iwiwiwiw
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Figure (6) shows the estimated parameters versus original 

parameters after running our recursive algorithm only once, 

also figure (7) shows the 1-D diagonal slice of third order 

cumulant of output data and 1-D diagonal slice of third order 

cumulant obtained by inserting our estimated parameters in 

equation (4). Moreover, it illustrates the accuracy of the 

algorithm. In accordance it can be concluded that, although the 
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estimated parameters do not match the originals exactly, but 

the used criterion is satisfied correctly. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig6: Main parameters versus estimated parameters 

 

 

 

 

 

 

 

 

 

 

 

 
Fig7: Output cumulant versus cumulant obtained by our estimated parameters 

inserted in equation (4) 

 

Example 2: (NMP-MA with q=16) the true non-minimum 

phase model is (according to figure (2)) 

)15(2)14(9)13(56)12(23

)11(14)10(30)9(12)8(31

)7(42)6(10)5(31)4(22
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Figure (8) shows the estimated parameters versus main 

parameters after running our recursive algorithm only once 

and figure (9) shows the 1-D diagonal slices of the third order 

cumulant of output data and that obtained by our estimated 

parameters. Moreover the comparison between our estimated 

and the main parameters, show that our estimated parameters 

have a phase delay in comparison with main parameters that 

comes from statistical criteria.  

 

 

 

 

 

 

 

 

 

 

 
Fig8: Main parameters versus estimated parameters 

 

 

 

 

 

 

 

 

 

 

 

 
Fig9: Output cumulant versus cumulant obtained by estimated parameters 

inserted in equation (4) 
 

Example 3: (NMP-MA with q=20) the true non-minimum 

phase model is (according to figure (2)) 
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Figure (10) shows the estimated parameters using our 

recursive algorithm, versus the original parameters after 

running our recursive algorithm for three times, also figure 

(11) shows the 1-D diagonal slices of the third order cumulant 

of output data and that obtained by our estimated parameters. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig10: Main parameters versus estimated parameter 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig11: Output cumulant versus cumulant obtained by our estimated 

parameters inserted in equation (4) 
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VII. CONCLUSION 

 

A novel method for blind identification the MA parameters of 

a non-minimum phase system, have been proposed in this 

paper. We have used one-dimensional versions of third order 

cumulants for parameter estimation and presented both 

analytical and optimization-based solutions for parameter 

estimation, also we have shown that un-known parameters can 

be identified step by step. Unlike other researches, our 

estimated parameters are not sensitive to the filter order. We 

have used Genetic Algorithm optimization as optimization 

algorithm, in order to update unknown parameters in each 

step. Moreover the results show the accuracy of proposed 

method and the ability of our algorithm in identifying the 

parameters of filter where the order of MA model exceeds 

four. 
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