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Abstract— We address, in this paper, the problem of 

estimating the input sequence of a known, non-minimum phase, 
FIR system, when a large number of its roots are located near or 
on the unit circle. This issue cannot be solved by conventional 
methods known to date. Recently, algorithms based on spectral 
factorization are considered as possible solutions of inversing 
non-minimum phase systems but, these techniques cannot 
prohibit the instability of the systems whose roots are located on 
the unit circle. We propose an alternative method based on 
adaptive filtering resulted from a new point of view of the 
deconvolution problem that avoids inversing the system. The 
LMS adaptive filter is used to meet our objective while faster 
implementation than optimization-based techniques, be it 
gradient based or genetic, is achieved. Moreover, the technique is 
validated by experimental results, in simulated cases, which are 
mainly focused on large sequence of signals in noisy conditions. 
 

Index Terms— Deconvolution, Non-Minimum Phase FIR 
System, LMS Adaptive Filter, Gradient based Adaptive Filter. 
 

I. INTRODUCTION 
econvolution is an intricate problem for at least two 
reasons: the measurements are usually noise corrupted, 

and the system is frequently non-minimum phase [1]. A 
simple filtering solution i.e. an inverse system is difficult to 
find because of these restrictions whose severity depends on 
the application. The main problem resides in inversing a non-
minimum phase system which may cause instability in the 
deconvolving filter (some poles of the inverse system may be 
located outside the unit circle in the z-plane). However, 
deconvolution has a wide range of applications including 
seismology, channel equalization, numerical differentiation, 
and speech synthesis [1], [2], [3], [4], [5], [6], [7], and [8]. In 
[1], the problem of estimating the input to a known linear 
system is treated in a shift operator polynomial formulation. 
The mean-square estimation error is minimized. The input and 
a colored measurement noise are described by independent 
ARMA (autoregressive moving average) processes. The filter 
is calculated by performing a spectral factorization and 
solving a polynomial equation. The approach can be applied to 
input prediction, filtering, and smoothing problems as well as 
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to the use of pre-filters in the quadratic criterion.  
Applications of deconvolution can be approached with 

different methods such as Kalman filtering [9], Wiener 
filtering [11], or Wiener optimization of filters with 
predetermined structure such as FIR filters [10]. Spectral 
factorization based algorithms have solved the problem of 
instability of inverse filtering occurred when the roots are 
located outside the unit circle but, the problem still remains 
when these roots are located on or near the unit circle [12].  

In this paper, we consider this problem by proposing a new 
viewpoint of the deconvolution problem which permits 
avoiding the inverse filtering and instability altogether. 
The organization of this paper is as follows: in section II a 
new insight of the deconvolution problem is discussed. In 
section III and IV an algorithm based on adaptive filtering is 
presented with two alternative methods for its implementation. 
Simulation results are reported in section V. Finally, we 
conclude in section VI by selecting the best method on the 
basis of speed of computation and accuracy of performance. 

II. NEW VIEWPOINT OF DECONVOLUTION PROBLEM 
Figure 1.a shows the general illustration for a non-minimum 

phase LTI systems. Figure 1.b indicates the view point of 
previous works in the deconvolution problem and figure 1.c 
shows a new viewpoint which forms the basis of this paper. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  (a). Non-minimum phase system, (b). Viewpoint of previous works 
used in inverse filter design and, (c). Our proposed viewpoint. 

The difference between two points of view resides in the 
fact that in the previous approaches an inverse filter is sought. 
This approach runs in difficulties when the roots of the system 
lie near or on the unit circle in the z-plane. This is while the 
insight shown in figure 1.c avoids inversing the non-minimum 
phase system. In other word, the problem is here converted as 
how to estimate the input signal. This estimation is carried out 
by modifying the input sequence in order to satisfy a criterion. 
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The used criterion is minimizing the sum of squared 
differences between the original output and the output yielded 
by the known system whose inverse is sought. 

 

III. PROPOSED ALGORITHM BASED ON ADAPTIVE FILTERING 
In [13] a method based on genetic algorithm with a similar 

viewpoint is used. The speed and accuracy problems 
encountered in optimization methods, like genetic algorithm, 
increase rapidly with the number of the unknown parameters. 
This problem is challenged in [13] by proposing a method 
which does not need to estimate all parameters jointly. 
Nevertheless, this method, being time consuming, is not very 
useful in real time signal processing. In this paper we use 
adaptive filtering techniques for estimating the sequence of 
input signal based on our previously mentioned viewpoint of 
deconvolution. In brief, assuming that the original system is 
LTI it is allowed replacing the unknown input and the impulse 
response, in our solution, following the convolution theory. 
This inverts the role of the input and the impulse response 
whose estimation is usually aimed at in adaptive filtering. 
Figure 2 shows how to use an adaptive filter for 
deconvolution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Block diagram of an adaptive filter (up). Setup used for deconvolution 
by inverting input and impulse response (down). 

 
In the setup used,                 is the unknown input sequence 

where N denotes the length of the adaptive filter’s input, 
output and the desired signal. Here,                        is the 
known finite impulse response of the non-minimum phase 
system of order p. The desired signal which may be 
contaminated by additive Gaussian white noise is actually the 
output of the original system at hand. It is clear that a 
sequence of zeros should be added to the known impulse 
response, now being used as input, to make it equal length as 
the desired signal d(n).  

It is noted that in the proposed solution, the impulse 
response of the adaptive filter is as long as the original system 
output and the convergence can only be achieved by iterating 
the algorithm as many times as necessary on the available 
data. The convergence issue is not dealt with here. 
Nonetheless, no problem appeared in our simulated test 
signals of thousand samples long although, as will be 

mentioned below, the minimum number of iterations used was 
ten. 

In the following two solutions are proposed for estimating 
the impulse response of the adaptive filter. 

 

A. LMS Adaptive Filtering 
 

The filter coefficients are updated in the LMS adaptive filter 
[14] as follows. 
 

                          (1) 
 
Where 

 
 
                      (2) 
 
 
 

In which 
 
 
                       (3) 
 
 
In above,     is a value in the interval between [0, 1].  
 

B. Gradient based method 
 
In the gradient descent algorithm we minimize a fitness 

function J iteratively starting at some initial point (here an 
estimate vector of the input signal). The gradient of J is 
computed at this point, and then moving in the direction of 
negative gradient or steepest descent by a suitable distance a 
new point or estimate is arrived at. This procedure is repeated 
at the new point. According to figure 2, for iterations  i=1, 2 
… the update rule is: 
 
                          (4) 
 
The fitness function (J) is defined as: 
 
  
                          (5) 
 
And  
 
                          (6) 
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                          (8) 
 

And compute 
y
J

∂
∂
r

 is formed as: 

                          (9)
  
 

By replacing (9) in (4), the updated value of ( )y i
r

 or the 
new input estimate is calculated. In the above formulation  
   is the step size at iteration i and is a constant equal to 
0.001 in our case. 

It is noted that in the gradient descent algorithm, the exact 
gradient of the mean square error is used whilst in the LMS 
algorithm a noisy estimate is employed. As the whole 
available data is used every time the exact gradient is 
calculated, the gradient descent algorithm is blocked based 
and consumes a much higher computation time than the LMS 
algorithm which is sample based and sequential. 
     

IV. STEP BY STEP DESCRIPTION OF PROPOSED ALGORITHM 
The description of our algorithm (using both methods) is 

shown in the following block diagrams. Figure 3 depicts the 
deconvolution problem for a non-minimum phase system with 
the shown impulse response where the unknown input must be 
estimated.    
 
 
 
 
 
 
 
 

Fig. 3. Deconvolution problem where input is to be estimated 
 

Note that we assume that the output and unknown input 
signal have the same length. Command “filter” in MATLAB 
is used to generate the output. 

Figure 4 shows how the deconvolution problem is 
converted into an adaptive filter impulse response calculation.   

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Using  adaptive filtering for estimating the unknown input 

 
Now, the desired and the input signals of the above adaptive 

filter are repeated at least 10 times to provide reliable 
estimation of the filter coefficients. Figure 5 is a graphic 
description of our algorithm. 

  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Estimation of the unknown input using adaptive filter and repeated 

signals. 
 

V. SIMULATION RESULTS 
A large number of simulations for different types of non-

minimum phase FIR systems are tested with different signal 
lengths using our proposed algorithm. Convergence was 
achieved in all cases. In the following simulation results of 
only two cases are discussed as examples. Both mentioned 
methods of LMS and Gradient based Adaptive Filter are 
evaluated in each example. The original input is checked for 
accuracy with its estimate. The output is calculated by 
convolving the true input signal with the impulse response of 
the non-minimum phase FIR system. Since the simulation 
involves a non-minimum phase system whose roots (zeroes) 
lie mostly near or on the unit circle for which other solutions 
fail, no comparison is made with other alternatives. 

 
 
Experiment 1: In this example we use a long sequence of a 

speech signal corresponding to vowel ‘a’ as the original input 
assumed unknown in our deconvolution problem. Figure 6 
shows this input, the impulse response and the noise corrupted 
output signal. A Gaussian noise is added to the original output 
at 10dB Signal to Noise Ratio (SNR). Figure 7 is the plots of 
estimated versus original input as calculated using our 
proposed methods. The non-minimum phase system impulse 
response is calculated using “firgr” command of MATLAB 
filter design toolbox. This routine uses the Parks-McClellan 
technique to design digital FIR filters. The input parameters of 
the routine are chosen by trial and error to make sure that a 
desired system with enough number of zeros near and on the 
unit circle is designed. 
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Fig. 6. (A). Original input, (B). Zero plot of system, (C). Impulse response 
and (D). Noise corrupted output  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(A) 

 
 
 
 
 
 
 
 
 
 
 
 
            (B) 
 
 
 
 
 
 
 
 
 
 
 
 

(C) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(D) 
Fig. 7. (A). Estimated input using LMS adaptive filtering (B). LMS 

estimated versus original input, (c). Estimated input using Gradient based 
optimization and (D). Gradient based estimated versus original  
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Experiment 2: The original input sequence in this example 
is chosen to be similar to a seismic reflection signal. Figure 8 
shows the original input, the impulse response and the noise 
corrupted output signal. A Gaussian noise (SNR 20dB) is 
added to the original output. Figure 9 shows the comparative 
results for this case. 
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Fig. 8. (A). Original input, (B). Zero plot of system, (C). Impulse response 
and (D). Noise corrupted output  
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Fig. 9. (A). Estimated input using LMS adaptive filtering (B). LMS 
estimated versus original input, (c). Estimated input using Gradient based 

optimization and (D). Gradient based estimated versus original  
 
The obtained results can be compared more objectively 
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using the error percentage defined as follows: 
 
 

 
 

 
 
 
 
Table 1 and 2 shows the comparison between the proposed 

methods, in terms of error percentage and computation time, 
for experiment 1 and 2 respectively. 

 
 
Table 1: Comparison between two proposed methods - experiment 

1 
Method Error 

Percentage 
Computation Time 

 
LMS Adaptive 

Filter 
2.03% 

 
4.00 seconds  

 
Gradient Based 

Adaptive Filter 
3.46% 

 
123 seconds 

 

 
 

Table 2: Comparison between two proposed methods - experiment 
2 

Method Error 
Percentage 

Computation Time 
 

LMS Adaptive 
Filter 

4.18% 
 

1.05 seconds  
 

Gradient Based 
Adaptive Filter 

7.00% 
 

43 seconds 
 

 
 

VI. CONCLUSION 

Two novel methods based on adaptive filtering have been 
proposed, in this work, for deconvolution of non-minimum 
phase FIR systems. These methods permit estimating the 
unknown input sequence while avoiding inversion of non-
minimum phase systems. Based on our proposed algorithm the 
unknown input sequence is identified as the coefficients of an 
adaptive filter while the original impulse response, after zero 
padding, is used as the input. Also, unlike other methods; ours 
is not dependent on the system type (non/minimum phase), 
output length and noisy conditions.  Experimental results have 
shown that the LMS method performs better, in terms of speed 
and accuracy, than the Gradient based adaptive filtering. 
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